
RESILINK – PRIMA S2 2021 – PROJECT ID 1707

Increasing Resilience of Smallholders with
Multi-Platforms Linking Localized Resource

Sharing

Deliverable D2.2a

RESILINK resource sharing digital platform – v1

Responsible Editor: ORANGE

Contributors: UPPA

Document Reference: RESILINK D2.2a

Distribution: Public

Version: 1.1

Date: March 2024



RESILINK D2.2a

CONTRIBUTORS TABLE

DOCUMENT SECTION AUTHOR(S)

SECTION 1 C. Pham (UPPA)

SECTION 2 A. Cazaux (UPPA)

SECTION 3 A. Cazaux (UPPA)

SECTION 4 A. Cazaux (UPPA)

DOCUMENT REVISION HISTORY

Version Date Changes

V1.1 April 19th, 2024 PUBLIC RELEASE

V1.0 March 25th, 2024 FIRST DRAFT VERSION FOR INTERNAL APPROVAL

V0.1 March 4th, 2024 FIRST RELEASE FOR REVIEW

Page 2 of 21



RESILINK D2.2a

EXECUTIVE SUMMARY

Deliverable D2.2a describes the intermediate platform, referred to as the RESILINK platform,
that stands between the RESILINK mobile app and the ODEP platform to implement
additional functionalities on top of ODEP. It also describes the open API approach to enable
third-party applications to use the RESILINK platform to build their own exchange platforms.

Page 3 of 21



RESILINK D2.2a

TABLE OF CONTENTS

1. Introduction 5
2. RESILINK platform: motivations 5

2.1. Architecture 6
2.2. Proof of concept 7
2.3. Deployed RESILINK platform 7

3. RESILINK platform: features for RESILINK 10
3.1. RESILINK database 10

3.1.1. Article collection 11
3.1.2. AssetTypeCounter collection 11
3.1.3. News collection 11
3.1.4. imgAsset collection 12
3.1.5. prosumer collection 12
3.1.5. user collection 12

3.2. Additional RESILINK function 13
3.1.1. Article 13
3.1.2. Asset 13
3.1.3. Contracts 13
3.1.4. News 13
3.1.5. Offer 13
3.1.6. Prosumer 14

4. RESILINK platform: security and integration 14
4.1. Reverse proxy and certification 15
4.2. Logs 16
4.3. Difficulties 17
4.4. Plan for the future 18

Page 4 of 21



RESILINK D2.2a

1.INTRODUCTION
RESILINK develops a distributed digital resource management platform for real-time
exchange of information on territorial resources and supplies & demands; connecting
smallholders to new supply, sharing opportunities and distribution channels. In addition,
RESILINK will incrementally use cutting-edge digital technologies to connect fields and farms
resources, automatize and add intelligence in the agri-food value chain to provide simple
application interfaces adapted to smallholders.

The lowest layer of the RESILINK digital resource management consists of the Orange
Decentralized Exchange Place (ODEP) platform initially developed by Orange for energy
and telecommunication ecosystems.

In addition to ODEP, and to maximize RESILINK’s usage by the end users, RESILINK will
develop a mobile application, referred to as RESILINK mobile app, that will be the main
interface to simply, quickly and intuitively manage resources. An intermediate platform,
referred to as the RESILINK platform, will stand between the RESILINK mobile app and the
ODEP platform to implement additional functionalities on top of ODEP.

This deliverable complements D5.2b “Evaluation technical framework – v2” and describes in
more detail the RESILINK platform.

2.RESILINK PLATFORM: MOTIVATIONS
RESILINK implements a dedicated intermediate RESILINK platform to serve as a front-end
to the ODEP platform. The illustration below depicts this concept.

Page 5 of 21

https://resilink.eu/wp-content/uploads/2024/02/D5.2b.pdf


RESILINK D2.2a

The RESILINK platform will function as an API intermediary between the ODEP API and the
RESILINK mobile app. Currently, the RESILINK platform is not deployed for open access but
is exclusively available for developers.

The RESILINK platform will also leverage Swagger technology. This approach provides
automatic generation of documentation, streamlining testing, and facilitating seamless
interchange between different versions of the RESILINK platform in the future.

2.1. Architecture
Since the project RESILINK is still in the developmental phase, a simple server architecture
has been chosen for the RESILINK platform and employed a backup file as a temporary
database. It is important to note that a genuine database will be required for scaling in the
future. The Proof-of-Concept (PoC) server is structured as follows – it is the result of a first
PoC carried out by Manuel Munier from UPPA with the help of Marc Despland from Orange.

Page 6 of 21



RESILINK D2.2a

In the root directory, the server configuration files with packages and versions, along with
various modules essential for server operation, will be stored.

The "src" child folder will contain the server code, encompassing the "index.js" file and the
"api" folder. The "index.js" file manages incoming calls (GET, POST, etc.) and defines the
paths to the files/folders to be utilised, specifying the server version.

Within the version-specific folder (e.g., v1), there are the "swagger.js" file, along with the
"controllers", "repositories", "routes" and "services" folders.

The Swagger file facilitates the definition of how URLs for accessing documentation are
formed and allows the addition of extra functionalities.

Files within the "controllers" folder serve as controllers responsible for managing HTTP
requests, validating data, and interacting with the appropriate services.

The "services" folder contains files with the application's business logic, handling data
manipulation, communication with models, and execution of domain-specific tasks.

In the "routes" folder, the files define API entry points and determine which controller
methods should be called in response to HTTP requests.

Finally, in the "repositories" folder, the files are responsible for accessing data from
databases, file systems, or other sources. They encapsulate data access logic and enable
the rest of the application to work with data in an abstract manner.

2.2. Proof of concept
Orange and UPPA investigated the technology building blocks: NodeJS, Javascript, and
conducted tests on HTTP REST API.

The PoC developed by Manuel Munier consists of two servers. The initial API intended for
RESILINK, designed to act as an intermediary platform for data filtering, is coded in Node.js
(Javascript) using Express and Swagger technology to simplify server construction and
documentation.

In addition to this server, a second Java server, also using Swagger, serves as the ODEP
API. Its role is focused on data retrieval and communication.

As of now, the PoC is operational, with both servers communicating effectively with each
other.

2.3. Deployed RESILINK platform
The RESILINK platform is currently hosted on a free server provided by the hosting service
Render, and one can access the Swagger documentation for the RESILINK platform:
https://RESILINK-api.onrender.com/v1/api-docs/.

Page 7 of 21

https://resilink-api.onrender.com/v1/api-docs/
https://resilink-api.onrender.com/v1/api-docs/


RESILINK D2.2a

Page 8 of 21



RESILINK D2.2a

The RESILINK platform is a server platform constructed with Node.js, hence using
Javascript. The use of Javascript enables Swagger, a documentation library that is also
applicable to a Java server, and Express, a framework enhancing the robustness of
server-side applications. Additionally, a MongoDB (NoSQL) database is integrated with the
server. This is particularly beneficial for storing data in memory that ODEP doesn't consider
(e.g., a user's telephone number).

Page 9 of 21



RESILINK D2.2a

The server architecture mirrors that of the PoC, with the "repositories" folder now labelled as
"database" and 2 new files named "error.js" and "loggers.js", which will respectively contain
the various Error classes for differentiating exceptions and additions to log entries,
associated with a name and a way of writing the log, as well as the destination file, in this
case the "loggers" folder, which has been added alongside the "services", "controllers",
"routes" and "database" folders.

The server's purpose is to redirect and transform data transmitted to and received from
ODEP. All requests initially directed to ODEP have been replicated with the same header
(path after the domain URL). The distinction lies in the domain name, and requests are now
directed to an HTTPS address rather than HTTP, making it compatible with iPhones. All data
transformation and calculation functions are now transferred from the mobile application to
the server to enhance the telephone's performance.

Furthermore, it is possible to store additional data and associate it with other data in the
database. If users choose to provide them, the RESILINK platform will save them in the
database, associating it with their ODEP ID for future retrieval. To avoid complications with
data setup, a need to exclude them from the data has been intended for transmission to
ODEP.

3. RESILINK PLATFORM: FEATURES FOR RESILINK
ODEP handles its own data but to use the RESILINK mobile application, there’s a need for
additional data such as a user's phone number, or data that is not used by ODEP, such as
items. In addition, the RESILINK mobile application needs functions that are more focused
on “usage”, such as creating a user profile, which will need creating a "user" account and a
"prosumer" account, without having to wait for the results of the 2 ODEP functions.

This is the reason a separated database along with functions to manage additional data are
necessary for RESILINK and have been implemented in the RESILINK platform. The
possibility of adding more data requirements and altering the data sent by ODEP can simplify
the mobile application in the future or implement solutions to overcome ODEP's constraints.

3.1. RESILINK database
The MongoDB database currently contains 6 collections that
are being used or will be used in the near future. They are
illustrated on the right.

Page 10 of 21



RESILINK D2.2a

3.1.1. Article collection

The "Article" collection will be used to store data linked to articles concerning
RESILINK. In the current vision, the list of articles is likely to be replaced by the list of
news, which represents the institutes that will divulge news due to problems of data
access and retrieval in the most widely used information-sharing software such as
Facebook, Instagram, etc.

An element of the "Article" collection is formed as follows:

{
_id: ObjectId() // Given by MongoDB to create a unique element
title: String // Article title
body: String // Article content
link: String // Link to article
image: String // Image converted to String containing base64 code

}

3.1.2. AssetTypeCounter collection

The “AssetTypeCounter” collection was created to overcome the problem of a single
assetType for an asset in ODEP. Thanks to this collection, a so-called "child"
assetTypes of a generic assetType can be created, so as to be able to reuse it. To do
this, a counter is associated with an assetType and attach this counter to the
assetType name to create a unique assetType identical to its parent when an user
wants to create an assetType.

An element of the "AssetTypeCounter" collection is formed as follows:

{

_id: ObjectId() // Given by MongoDB to create a unique element
assetType: String // Father assetType
count: Int32 // Number of children of an assetType created

}

3.1.3. News collection

The "News" collection, like the "Article" collection which stores papers or posts from
news accounts, is designed to store only the name of an institute, newspaper or
personality and one of its networks. Unlike the "Article" collection, this approach does
not entail any danger of data appropriation or web scrapping problems.

An element of the "News" collection is formed as follows:

{
_id: String // id of a news source
url: String // account url

Page 11 of 21



RESILINK D2.2a

Country: String // country of origin of the account/newspaper
Institute: String // account/journal name

}

3.1.4. imgAsset collection

The "imgAsset" collection will enable a user to have a photo for his asset and his
offer. Previously, the RESILINK mobile application used the imgur platform database,
but this constrained users to a limit of stored images.

An element of the "imgAsset" collection is formed as follows:

{
_id: ObjectId() // Given by MongoDB to create a unique element
id: Int32 // asset id
owner: String // user creating the asset
img: String // base64 image set to string

}

3.1.5. prosumer collection

The "prosumer" collection will store all the data you want to add to a prosumer profile
that ODEP doesn't take into account. For the moment, a prosumer only needs 1
additional piece of information: a list of "news" accounts registered by the user.

An element of the "prosumer" collection is formed as follows:

{

_id: String // user name
bookMarked: List<String> // list of news ids the prosumer wishes to save

}

3.1.5. user collection

The "prosumer" collection will store all the data you want to add to a prosumer profile
that ODEP doesn't take into account. For the moment, a prosumer only needs 2
additional pieces of information: his telephone number and his address.

An element of the "prosumer" collection is formed as follows:

{

_id: String // user id given by ODEP
username: String // user name
phoneNumber: String // user phone number
password: String // user password

}

Page 12 of 21



RESILINK D2.2a

3.2. Additional RESILINK function
Numerous functions have been added and will undoubtedly be increased in the future to
meet user or the RESILINK mobile app need.

All added functions accessible by request are on the Swagger page of the web server, but
additions in relation to ODEP are not displayed directly on it. Here are the details of what the
RESILINK platform does in addition.

3.1.1. Article

The Article entity represents a newspaper article. With the RESILINK platform, all or
only the last 4 articles entered in the database can be retrieved. However, updating
this collection automatically is not feasible, as web scraping would be required to
retrieve data from several sites at once. The web scraping solution can be complex
from a legal point of view, given that some data may be the property of someone else
or some other entity.

3.1.2. Asset

Add the "img" key to the default "asset" entity. This is not a function added in addition
to the ODEP function, which means that it is processed in every function that has the
same query path as the ODEP queries. This key will contain the asset image if the
user has set one when creating an asset. In addition to managing an asset image,
there is a function for creating an asset and an associated assetType, a function for
retrieving an asset map with the asset id and associated value as key, and the asset
itself, as well as a function for retrieving an asset image via its id.

3.1.3. Contracts

For the "Contracts" entity, the ability to retrieve only the user's current contracts has
been added.

3.1.4. News

News accounts can be retrieved by country or with a list of ids.

3.1.5. Offer

For offers, many additions have been made:

● Recovery of offers that are valid "for sale". Offers that can be displayed in the
list of offers for sale.

● Retrieval of offers via a more flexible filter than ODEP's, in which you can
specify

○ assetType
○ asset
○ price

Page 13 of 21



RESILINK D2.2a

○ whether the price should be higher, lower or equal
○ the date
○ if the date must be less than or greater than
○ existing properties such as gps location.

● Retrieve offers from the owner.
● Creation of an offer with its asset and assetType. This is a query that will

contain the body of an offer and an asset (repeat of the previous function to
create an asset and its assetType).

3.1.6. Prosumer

In the prosumer entity, similar to the "asset" entity, a key named "bookmarked" has
been introduced, representing the list of news items saved by the user. Additionally,
users are able to edit their "bookmarked" list and create a user profile and prosumer
status simultaneously.

Furthermore, a distinction is made here between retrieving prosumers solely with
ODEP data and those with additional data from the RESILINK database.

4. RESILINK PLATFORM: SECURITY AND INTEGRATION

The RESILINK platform has evolved to become more complete and accessible. The primary
objective is to ensure accessibility and usability, particularly the API, for all users.

The server in its current state has been redesigned to be supported by servers at the
University of Pau. The servers hosting the RESILINK platform are not suitable for real use of
RESILINK.

Since hosting is free, Render has a lot of constraints when it comes to the speed of
processing requests received and sent, a viable alternative where total control over the
server is needed.

Therefore, hosting the RESILINK platform at the University of Pau is one of the solutions, but
to be entitled to do so, several security questions had to be addressed to comply with the
RGPD security standard.

To meet these requirements, several points have been added to the RESILINK platform and
mobile application

● A reverse proxy to ensure request certification
● web server logs to trace all communications with a client and ODEP or the RESILINK

database
● logs in the mobile application when a request is sent and received.

Page 14 of 21



RESILINK D2.2a

4.1. Reverse proxy and certification
The server operates as a web server with the express framework used in node.js. Therefore,
the implementation of a reverse proxy was necessary to ensure protection and compliance
with an SSL or TLS (security protocol) agreement for the server. The NGINX software was
selected for the reverse proxy role, as it offers simpler reverse proxy setup, easier
configuration and better handling of so-called static requests (requests containing images or
files, for example) than its competitors.

Furthermore, the SSL/TLS contract can be set up directly in the web server, but having a
reverse proxy provides an additional layer of security to mask the backend server or redirect
via DNS.

But to be able to create a valid SSL or TLS contract, a domain name and the associated
DNS that comply with A and/or AAAA standards, i.e. IPv4 and/or IPv6, is needed. For the
moment, a discussion to obtain a domain name via the Université de Pau et des Pays de
l'Adour is in progress, and a valid associated contract has already been created.

Tests with DuckDNS (free DNS generator) and let's encrypt (certification authority for
SSL/TLS contracts) have been carried out, but without success for the creation of a contract
with no domain name and just a DNS.

However, tests have been carried out with a self-signed certificate and show that it is
possible to make requests with a key to the server.

To further secure sensitive data, the telephone number (if the user has one) and password
are encrypted using an AES encryption algorithm.

This encryption uses a secret key to decipher the stored encrypted data, as opposed to
hashing (for passwords) or masking (for phone numbers), where it will be very complex to
recover the initial value for masking.

Page 15 of 21



RESILINK D2.2a

4.2. Logs
A request history has been set up by recording the requests sent to the client (smartphone)
and to the server. The key identifying the user making the request is the token of the "User"
account currently using ODEP.

For logging purposes, this takes the form of a string containing data relating to the use of the
RESILINK platform in the form of a json and the name of the class as well as the timestamp
on which the log was produced. The format of the log on the client and server sides will be
similar, and if data is in the form of a json, it will be easier to sort them if this is necessary.

On the server side, the json takes the form :

{
service: "log type",
from: "function name" ,
error: "error that occurred", // appears only if there is an error
tokenUsed: "user token",
level: "degree of severity", // can be “info”, “warning” or “error”
message: "custom message for more information",
timestamp: "timestamp in UTC format 'YYYY--MM-DDTHH:mm:ss.SSSZ'",

}

For the server, the log types will differentiate access between ODEP and the RESILINK
database, and so the log types will be as follows:

● getDataODEPService (used when retrieving data from ODEP)
● getDataRESILINKService (used if no data is retrieved from ODEP)
● updateDataODEPService
● updateDataRESILINKService
● deleteDataODEPService
● deleteDataRESILINKService
● patchDataODEPService
● connectDBRESILINKService

On the client side, the log looks like this:

“degree of severity - timestamp - function name - custom message - {data: ‘data to
send/receive’}”

In the event of an error, the "data" key will be replaced with "error," and the error message
retrieved should mirror that of the server.

In each scenario, the logging process follows this logic: upon receiving a log, if no error is
detected, it will be logged at the info level. However, for server-related logs, what is recorded
is the content of the data received from ODEP or the RESILINK database. However, for
mobile-related logs, what is logged is the received status code (e.g., 200 or 401).

Page 16 of 21



RESILINK D2.2a

Additionally, when initiating data transmission for modification, creation, or deletion to the
RESILINK platform, ODEP, or the RESILINK platform's database, a log with a warning level
will be generated. This log includes the data to be transmitted before its actual
transmission.The data can be a whole body (a JSON) or just an id for a deletion, or both.

The logs are saved locally on the server and on the mobile, and on the server they will be
separated into several files to differentiate between logs for ODEP and logs concerning
RESILINK, while on the mobile they will be on one file, and logs that are not of "error" level
will be deleted automatically if the file exceeds 100mo in size.

These files are a temporary measure that will be replaced by a backup in collections. For
testing purposes, it is easier to have the logs in a file to directly see where the errors are.

4.3. Difficulties
One of the most important outcomes is the deployment of the server in the cloud for access
by all. A request was made to the UPPA to remedy this problem, but to register the
RESILINK platform there, tests were carried out and they were either impossible or
complicated to validate, although some were simpler.

To be able to create a certification contract and secure communications, the option is to
either have to pay for the contract, or create one using an authority authorized to create
certificates. Under these circumstances, buying a certificate is not necessary, since UPPA will
provide us with one after confirming that minimum security is in place, so creating one is
probably simpler. However, even with an authority like "Let's Encrypt", obtaining a DNS is still
necessary. Precaution is needed to avoid phishing, and a paid domain name is required for
validation, as ownership of the domain name is necessary.

After numerous experimentation and iteration, creating a certificate without a domain name is
not possible in the knowledge that UPPA will be able to provide us with one too.

Some issues have been addressed (solutions may change):

● Create a reverse proxy to filter data before it reaches the server.
● The purpose of the reverse proxy is to obtain the SSL/TLS certification contract.
● Set up a logging system to trace requests on both server and client sides.
● Problem of creating several assets under one assetType solved by creating a child

assetType for each asset.
● Server set-up at a host with a free option (temporary, as it is very inconvenient).

○ accessible via iphone as the host is https
● Setting up functions for RESILINK and its mobile application

○ quick creation of an offer, asset and assetType.
○ sorting implemented on the server is much less restrictive (requires much less

information).
● Image management is no longer handled by the imgur platform, but by our own

RESILINK platform.

Some problems still need to be solved:

● Obtaining a certificate and testing it

Page 17 of 21



RESILINK D2.2a

○ deploy the RESILINK platform on an in-house or pay-as-you-go host.
● Recovering data from newspaper articles or instagram profiles etc (abandoned due to

the disadvantages of web scraping).
● Distinction between two local servers data with shared data.

○ e.g. Local server B cannot access assetType created from local server A.

4.4. Plan for the future
The RESILINK platform in its current state allows the mobile application to function properly
with its new functionalities, but it must be able to respond to more needs.

The RESILINK platform will enable other services to use it, which is an intermediary to
ODEP. A discussion on this subject has already taken place to put forward ideas, and they
are as follows:

● Distinguish entities by their origin (RESILINK and other services) by putting the
service that created the assetType in the "description" key, or by asking ODEP to set
up a corresponding key.

● Provide frameworks to create a mobile application quickly that can use RESILINK.
● To solve the problem of non-access to data created on a local server by another

server, a request may be made to ODEP to create a field to handle such cases.

Page 18 of 21



RESILINK D2.2a

ACRONYMS LIST

Acronym Explanation

AES Advanced Encryption Standard

API Application Programming Interface

APK Android Package Kit

DNS Domain Name Server

HTTP Hyper Text Transfer Protocol

IPv4/IPv6 Internet Protocol v4 / v6

JSON JavaScript Object Notation

ODEP Orange Decentralized Exchange Place

PoC Proof-of-Concept

SSL/TLS Secure Socket Layer/Transport Layer Security

URL Universal Resource Locator

Page 19 of 21



RESILINK D2.2a

PROJECT CO-ORDINATOR CONTACT

Pr. Congduc Pham

University of Pau

Avenue de l'Université

64000 PAU

FRANCE

Email: Congduc.Pham@univ-pau.fr

Page 20 of 21



RESILINK D2.2a

ACKNOWLEDGEMENT

This document has been produced in the context of the PRIMA RESILINK project. The
RESILINK project consortium would like to acknowledge that the research leading to these
results has received funding from the European Union through the PRIMA program.

Page 21 of 21


