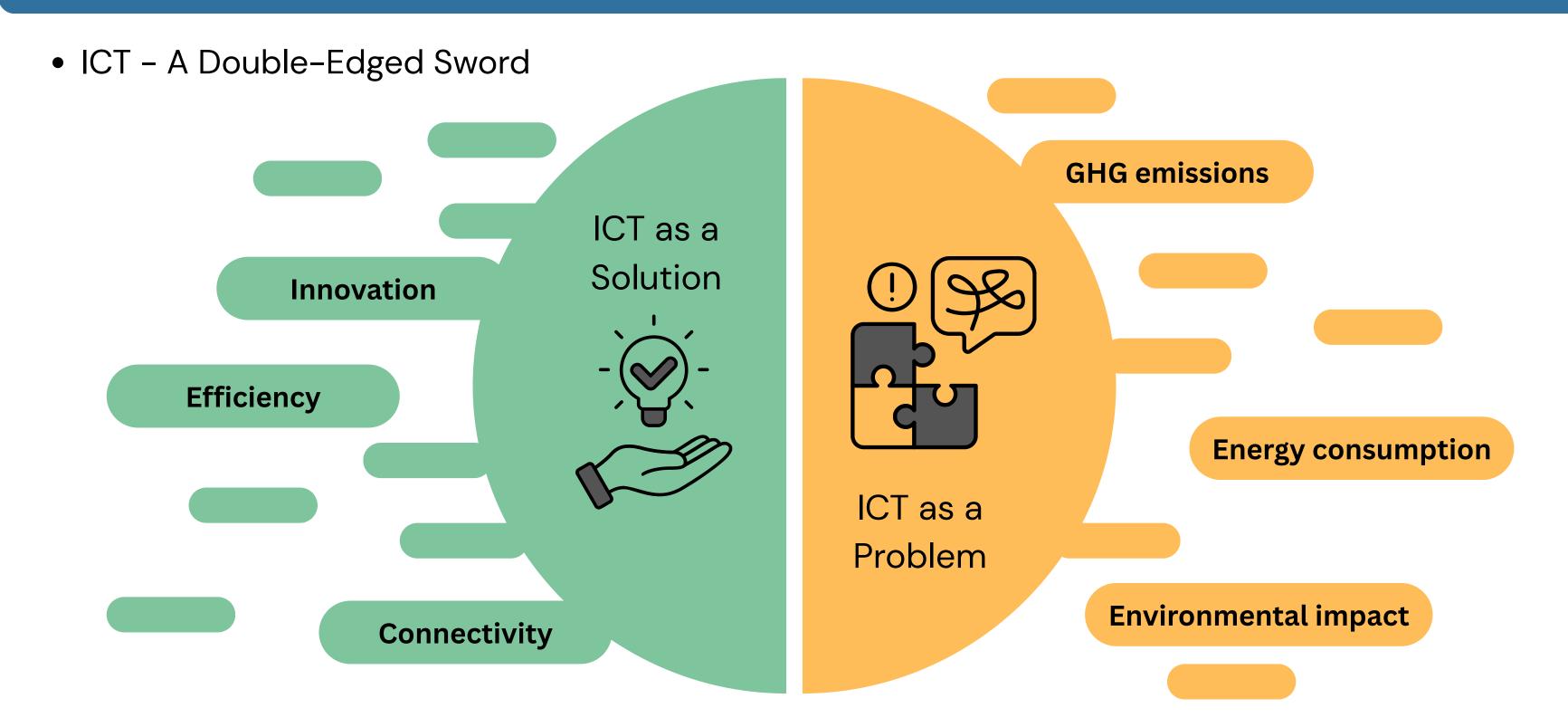
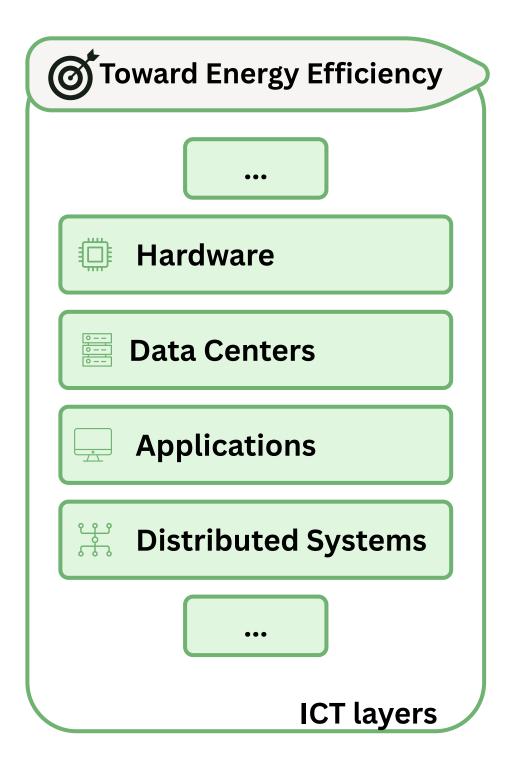


An Empirical Study on

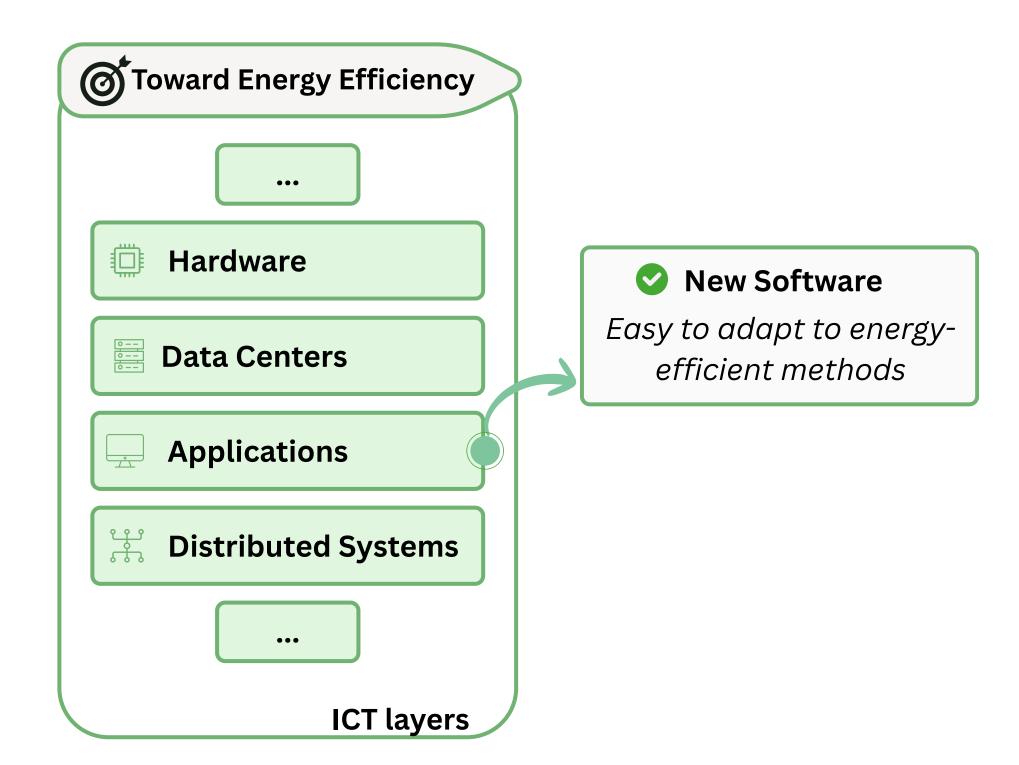
Estimating Energy Consumption From Software Traces

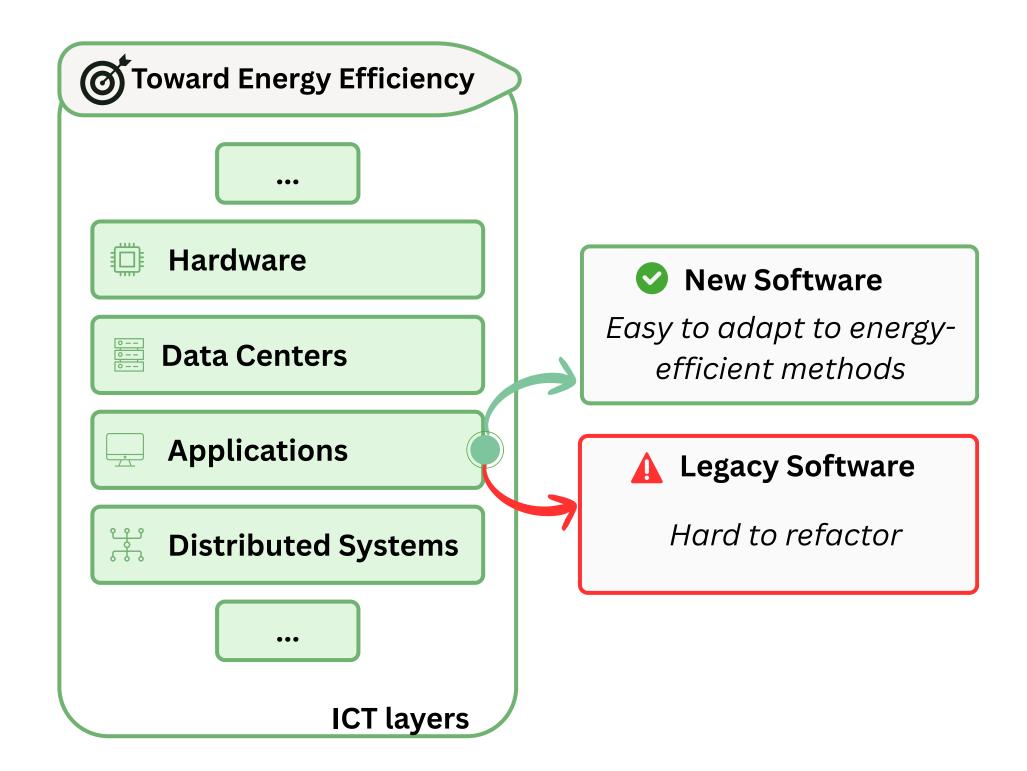
Authors: Phuong Nguyen^{1,2} (presenter), Adel Noureddine ^{3,4} and Congduc Pham^{1,2}

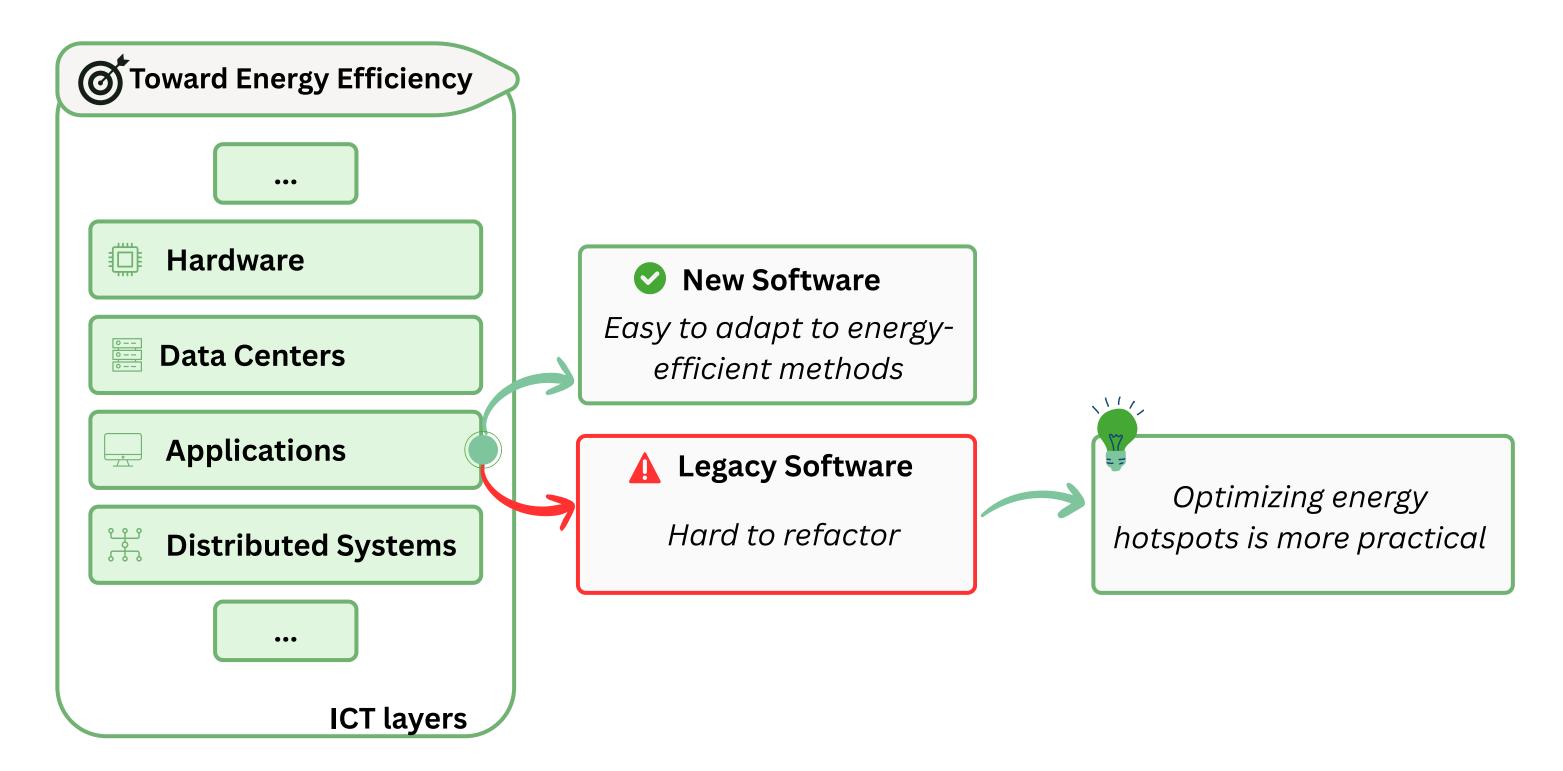




This research was supported by CCLO (France) and the RESILINK project (PRIMA S2 2021, EU-funded).




• The Legacy Software Challenge


• The Legacy Software Challenge

• The Legacy Software Challenge

The Legacy Software Challenge

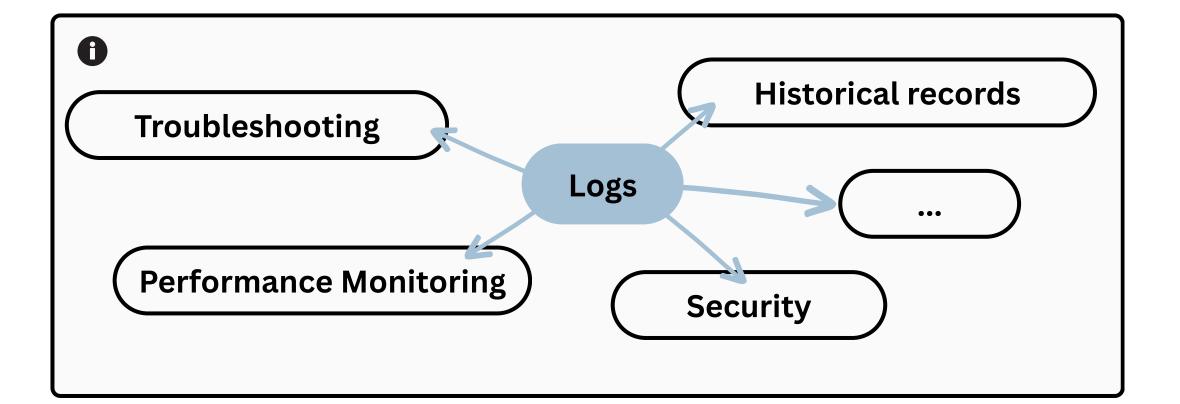
Optimizing Energy Hotspots

Monitor Energy Usage

Tools exist, but they may add overhead

Identify Energy Hotspots

Optimize Energy Hotspots


Optimizing Energy Hotspots

Monitor Energy Usage

Tools exist, but they may add overhead

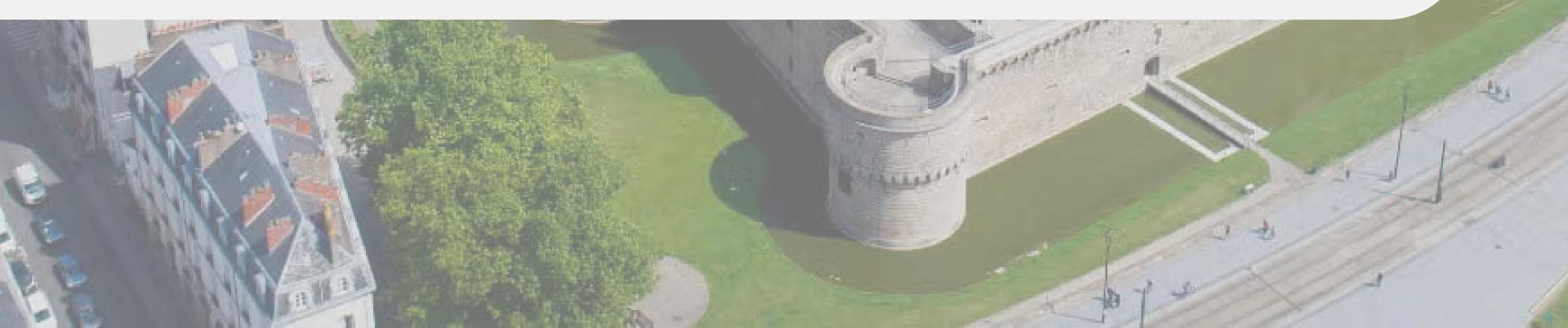
A simpler, developer-friendly solution: Logs **Identify Energy Hotspots**

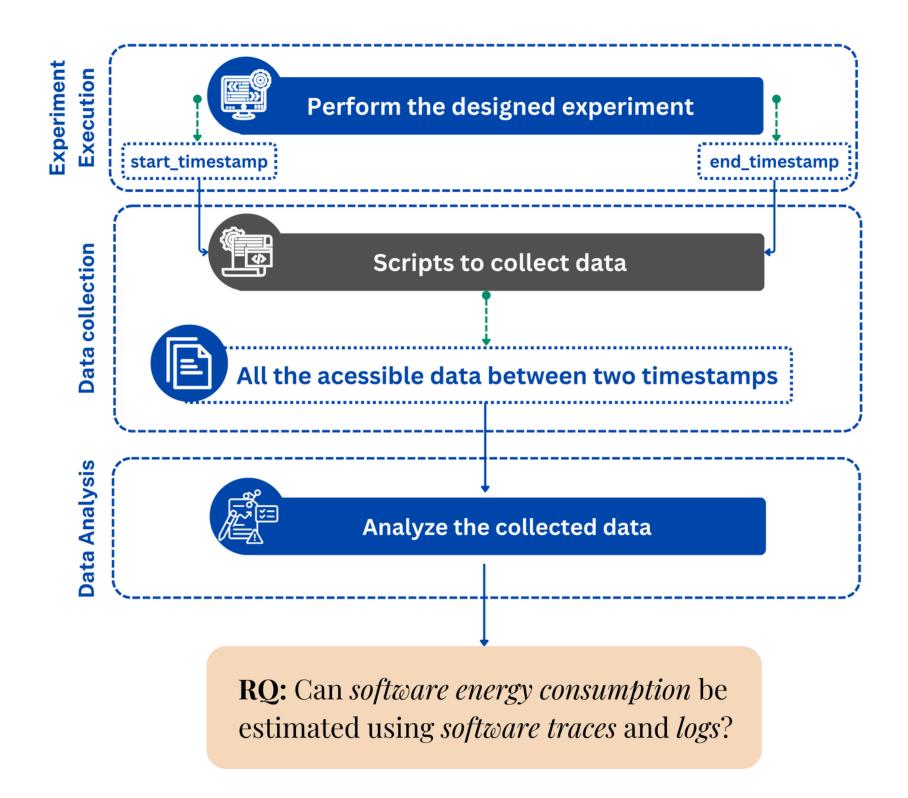
Optimize Energy Hotspots

Optimizing Energy Hotspots

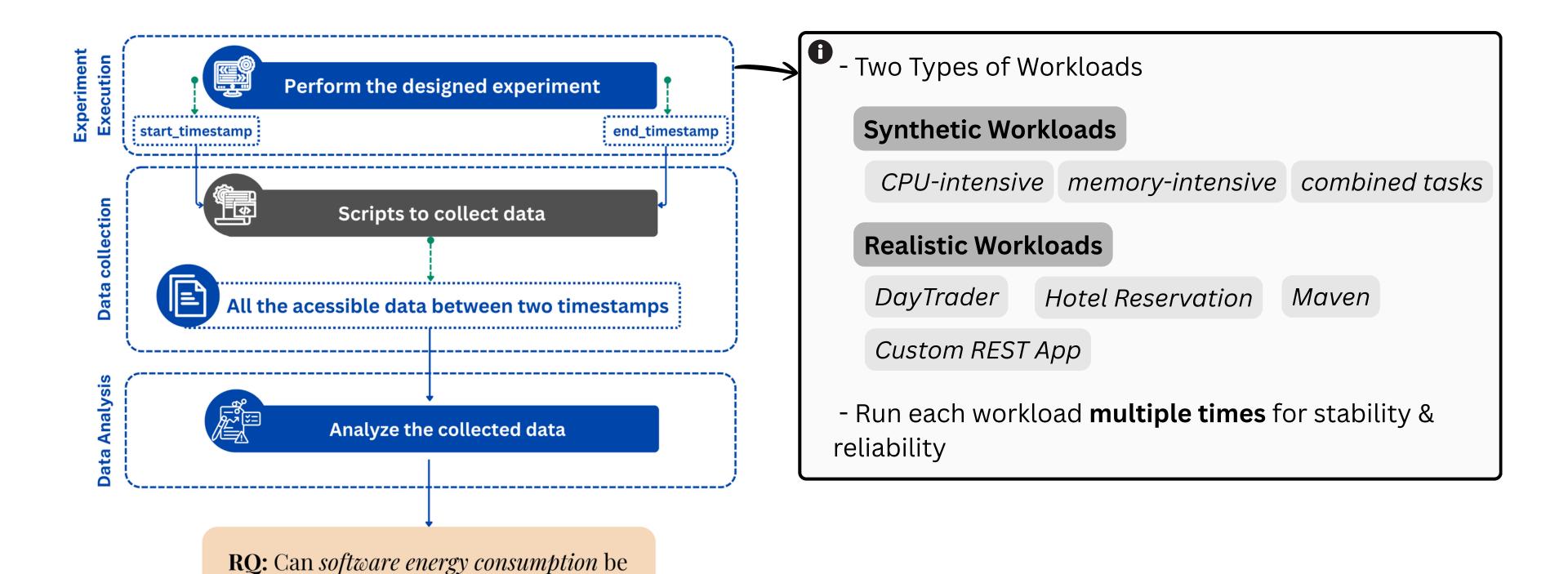
Monitor Energy Usage

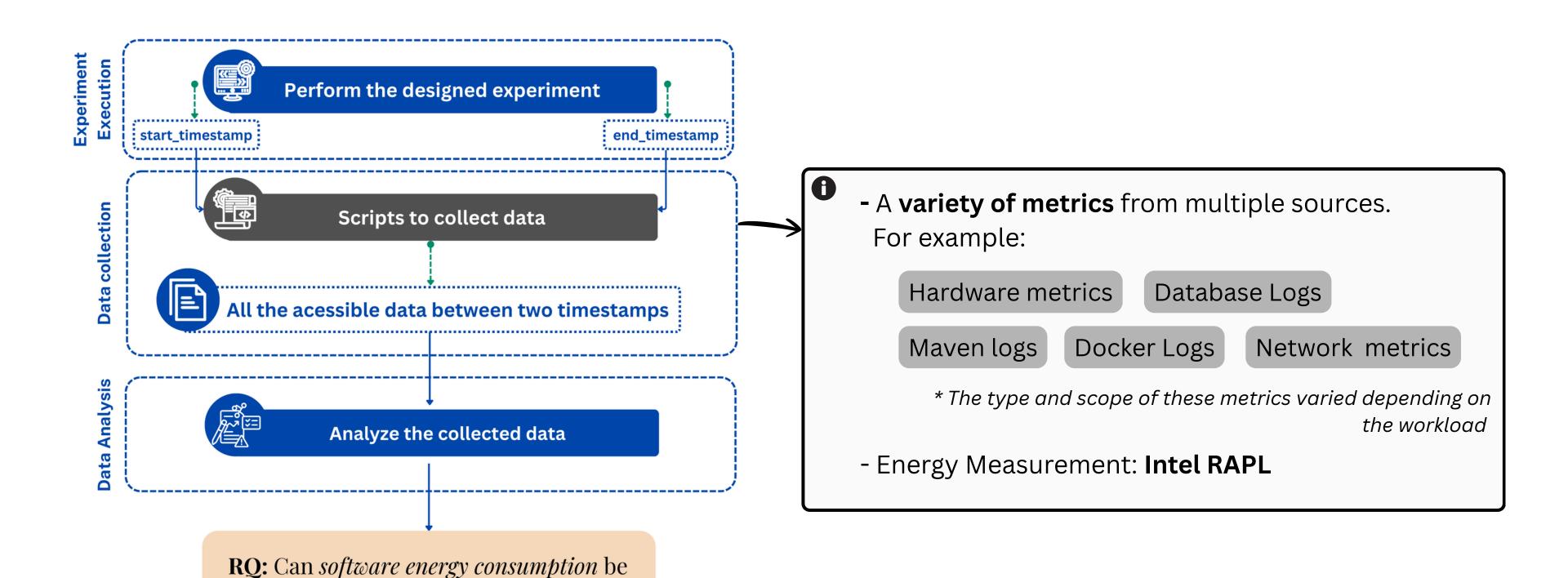
Identify Energy Hotspots

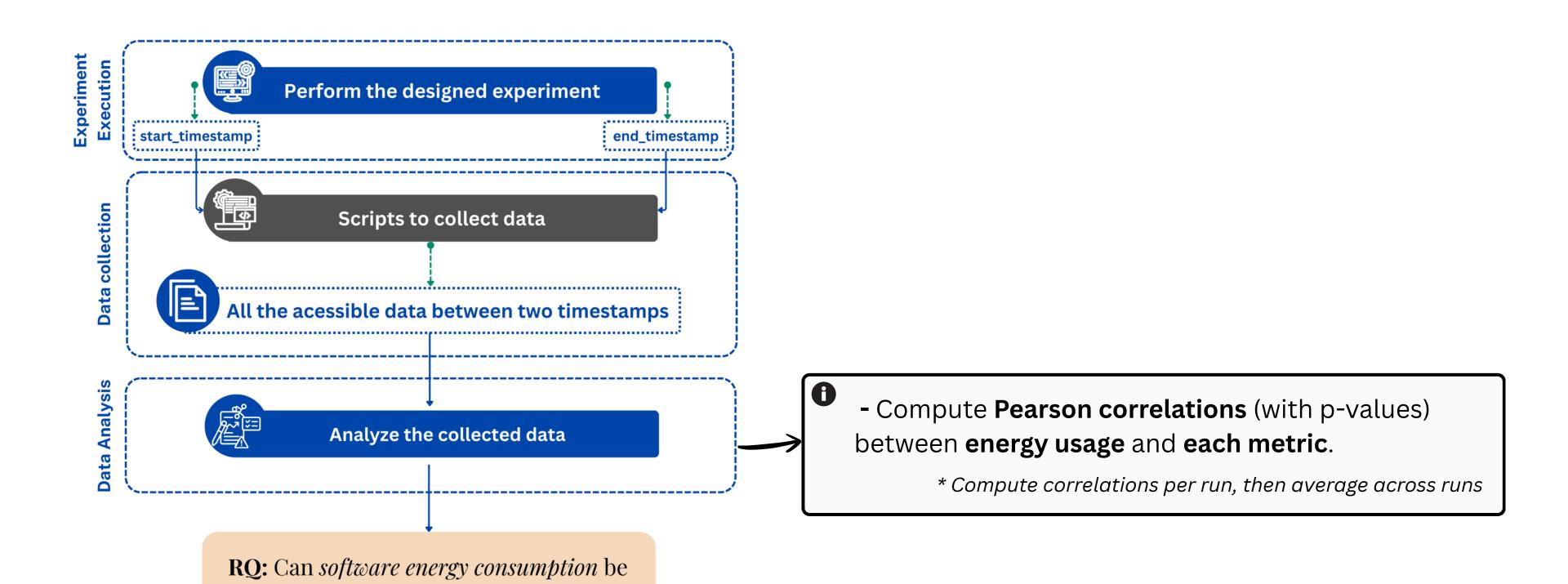

Optimize Energy Hotspots

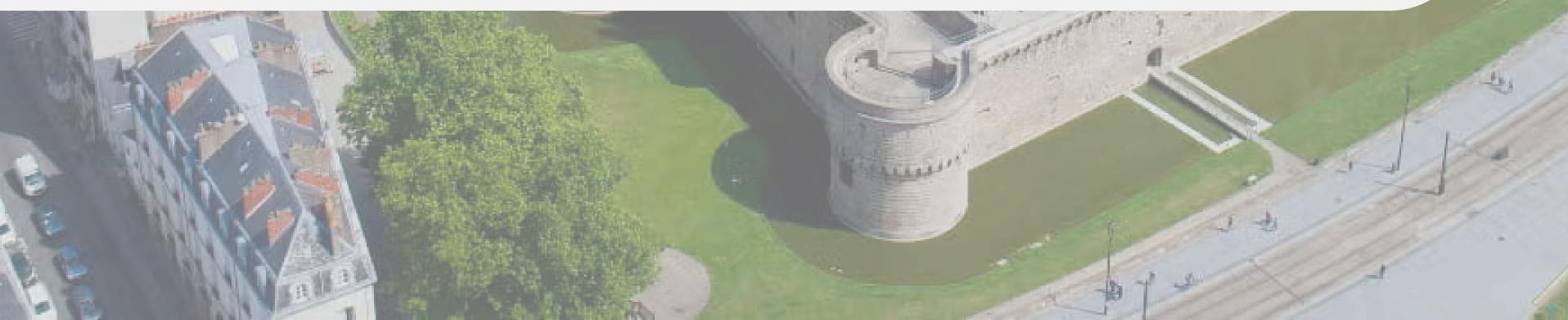

Tools exist, but they may add overhead

A simpler, developer-friendly solution: Logs **Research Question:**


Can software energy consumption be estimated using software traces and logs?




estimated using *software traces* and *logs*?


estimated using *software traces* and *logs*?

estimated using *software traces* and *logs*?

RESULTS & INSIGHTS - Synthetic Workloads

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- **CPU utilization**: r = 0.452 0.739, p < 0.001
- **Disk writes**: *r* = 0.462 0.534, *p* < 0.001 in CPU-intensive workload.
- Memory utilization & disk reads: not significant

Table 1: Pearson correlations between collected metrics and energy consumption for synthetic workloads.

	100	ms inter	val	1s interval				
	(i)	(ii)	(iii)	(i)	(ii)	(iii)		
Collected metrics	r	r	r	r	r	r		
CPU Utilization	0.489*	0.582*	0.452*	0.547*	0.739*	0.505*		
#Reads on disk	0.249*	0.086	0.026	0.247*	0.060	-0.068		
#Writes on disk	0.462*	0.132*	0.016	0.534*	0.129	-0.076		
Memory Utilization	-0.092*	0.144*	-0.007	-0.122	0.153*	-0.085		

⁽i) CPU-intensive; (ii) Memory-intensive; (iii) Combined tasks

r: The Pearson correlation coefficient

^{*}p < 0.05, **p < 0.01, ***p < 0.001

RESULTS & INSIGHTS - Synthetic Workloads

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- **CPU utilization**: r = 0.452 0.739, p < 0.001
- **Disk writes**: *r* = 0.462 0.534, *p* < 0.001 in CPU-intensive workload.
- Memory utilization & disk reads: not significant

Insights

- CPU utilization strong positive predictor of energy consumption
- **Disk writes** matter only in CPU-heavy tasks
- Memory utilization has minimal impact

Table 1: Pearson correlations between collected metrics and energy consumption for synthetic workloads.

	100	ms inter	val	1s interval			
	(i)	(i) (ii) (iii)			(ii)	(iii)	
Collected metrics	r	r	r	r	r	r	
CPU Utilization	0.489*	0.582*	0.452*	0.547*	0.739*	0.505*	
#Reads on disk	0.249*	0.086	0.026	0.247*	0.060	-0.068	
#Writes on disk	0.462*	0.132*	0.016	0.534*	0.129	-0.076	
Memory Utilization	-0.092*	0.144*	-0.007	-0.122	0.153*	-0.085	

⁽i) CPU-intensive; (ii) Memory-intensive; (iii) Combined tasks

r: The Pearson correlation coefficient

^{*}p < 0.05, **p < 0.01, ***p < 0.001

RESULTS & INSIGHTS - DayTrader

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results - DayTrader 7

- **# Network packets**: *r* = -0.335, *p* = 0.001
- Total packet length: r = -0.321, p = 0.001
- # HTTP requests: r = -0.314, p = 0.001

Table 2 : Pearson corre	lations between collected
metrics and energy co	nsumption for DayTrader.

	DayTrader 7	DayTrader 10
Collected metrics	r	r
#HTTP Requests	-0.314**	-0.25*
#Req. by Method GET	-0.313**	-0.25*
#Req. by Response 200	-0.316**	-0.251*
#Network Packets	-0.335**	-0.242*
Total Length of Packets	-0.321**	-0.241*
AS Memory Utilization	0.243	0.432*

RESULTS & INSIGHTS - DayTrader

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results - DayTrader 7

- **# Network packets**: *r* = -0.335, *p* = 0.001
- Total packet length: r = -0.321, p = 0.001
- # HTTP requests: r = -0.314, p = 0.001

Results - DayTrader 10

• Application server memory utilization: r = 0.432, p = 0.012

	DayTrader 7	DayTrader 10
Collected metrics	r	r
#HTTP Requests #Req. by Method GET	-0.314** -0.313**	-0.25* -0.25*
#Req. by Response 200	-0.316**	-0.251*
#Network Packets Total Length of Packets	-0.335** -0.321**	-0.242* -0.241*
AS Memory Utilization	0.243	0.432*

RESULTS & INSIGHTS - DayTrader

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results - DayTrader 7

- **# Network packets**: *r* = -0.335, *p* = 0.001
- Total packet length: r = -0.321, p = 0.001
- # HTTP requests: r = -0.314, p = 0.001

Results - DayTrader 10

• Application server memory utilization:

$$r$$
 = 0.432, p = 0.012

Insights

• Workload variability affects energy predictability

Table 2: Pearson correlations between collected metrics and energy consumption for DayTrader.

	DayTrader 7	DayTrader 10
Collected metrics	r	r
#HTTP Requests	-0.314**	-0.25*
#Req. by Method GET	-0.313**	-0.25*
#Req. by Response 200	-0.316**	-0.251*
#Network Packets	-0.335**	-0.242*
Total Length of Packets	-0.321**	-0.241*
AS Memory Utilization	0.243	0.432*

RESULTS & INSIGHTS - Hotel Reservation

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- # Docker logs: r = 0.592, p < 0.001
- # Slow query logs: r = 0.716, p < 0.001
- # Logs from <u>reservation</u>: r = 0.710, p < 0.001
- # Slow query logs from <u>reservation</u>: r = 0.716, p < 0.001

Table 3: Pearson correlations between collected metrics and energy consumption for HotelReservation.

Collected metrics	r
#Docker logs	0.592***
#Logs from reservation	0.592*** 0.710*** 0.716***
#Slow query logs	0.716***
#Slow query logs from reservation	0.716***

RESULTS & INSIGHTS - Hotel Reservation

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- # Docker logs: r = 0.592, p < 0.001
- # Slow query logs: r = 0.716, p < 0.001
- # Logs from <u>reservation</u>: r = 0.710, p < 0.001
- # Slow query logs from <u>reservation</u>: r = 0.716, p < 0.001

Insights

- Structured logs provide more reliable energy insight
- The reservation container acts as the system bottleneck

Table 3: Pearson correlations between collected metrics and energy consumption for HotelReservation.

Collected metrics	r
#Docker logs	0.592***
#Logs from reservation	0.592*** 0.710*** 0.716***
#Slow query logs	0.716***
#Slow query logs from reservation	0.716***

RESULTS & INSIGHTS - Custom REST App

Results

- # SQL statements: r = 0.366 0.460, p < 0.006
- Normal workload CPU utilization : r = 0.717, p < 0.001
- Stress & concurrent workloads: # HTTP requests, # Network packets, Total packet length: r > 0.4, $p \le 0.005$

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Table 4: Pearson correlations between collected metrics and energy consumption for Custom REST App.

	Exp. (i)	Exp. (ii)	Exp. (iii)
Collected metrics	r	r	r
CPU Utilization	0.717***	0.438	0.668
#HTTP Requests	0.030	0.423**	0.461***
#Req. by Method PUT	_	0.423**	0.461***
#Req. by Response 200	0.030	0.423**	0.461***
#SQL statements	0.366***	0.421**	0.460***
#Network Packets	-0.096	0.425**	0.449***
Total Length of Packets	-0.10	0.425**	0.454***

⁽i) Normal workload; (ii) Stress workload; (iii) Concurrent workload \mathbf{r} : The Pearson correlation coefficient *p < 0.05, **p < 0.01, ***p < 0.001

RESULTS & INSIGHTS - Custom REST App

Results

- # SQL statements: r = 0.366 0.460, p < 0.006
- Normal workload CPU utilization : r = 0.717, p < 0.001
- Stress & concurrent workloads: # HTTP requests, # Network packets, Total packet length: r > 0.4, $p \le 0.005$

Insights

- # SQL statements the most stable and reliable indicator of energy consumption
- **Network and HTTP-related metrics** moderately predictive, but mainly under stress or concurrent workloads
- **CPU utilization** strong predictor only under the normal workload
- **Memory utilization** *no statistically significant relationship*

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Table 4: Pearson correlations between collected metrics and energy consumption for Custom REST App.

	Exp. (i)	Exp. (ii)	Exp. (iii)
Collected metrics	r	r	r
CPU Utilization	0.717***	0.438	0.668
#HTTP Requests	0.030	0.423**	0.461***
#Req. by Method PUT	-	0.423**	0.461***
#Req. by Response 200	0.030	0.423**	0.461***
#SQL statements	0.366***	0.421**	0.460***
#Network Packets	-0.096	0.425**	0.449***
Total Length of Packets	-0.10	0.425**	0.454***

⁽i) Normal workload; (ii) Stress workload; (iii) Concurrent workload \mathbf{r} : The Pearson correlation coefficient *p < 0.05, **p < 0.01, ***p < 0.001

RESULTS & INSIGHTS - Maven

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- # Maven logs activiti: *r* = -0.507, *p* < 0.001
- # Maven logs jackson: *r* = 0.315, *p* < 0.05
- **Disk reads in most projects**: *r* = 0.306 0.514, *p* ≤ 0.03

Table 5: Pearson correlations between collected metrics and energy consumption for Maven projects.

	activiti	clojure	jitwatch	languagetool	litemall	esson	jackson	johnzon	JSON-Java	JSON-Simple
Collected data	r	r	r	r	r	r	r	r	r	r
#Maven logs	-0.507***	-0.183	-0.522	-0.116	-0.301	0.113	0.315*	-0.129	<0.001	-0.116
#Logs at level INFO	-0.537***	-0.241	-0.344	-0.116	-0.311	0.113	0.318*	-0.111	0.005	-0.116
#Reads on disk	0.199	0.394 **	0.432*	0.306*	0.430*	0.435**	0.260	0.238	0.348*	0.514**

r: The Pearson correlation coefficient

^{*}p < 0.05, **p < 0.01, ***p < 0.001

RESULTS & INSIGHTS - Maven

* Only statistically significant correlations are reported: |r| > 0.3, p < 0.05

Results

- # Maven logs activiti: r = -0.507, p < 0.001
- # Maven logs jackson: *r* = 0.315, *p* < 0.05
- **Disk reads in most projects**: *r* = 0.306 0.514, *p* ≤ 0.03

Insights

- **Disk reads most consistent** energy indicator
- # Maven logs unreliable predictor across projects

Table 5: Pearson correlations between collected metrics and energy consumption for Maven projects.

	activiti	clojure	jitwatch	languagetool	litemall	esson	jackson	johnzon	JSON-Java	JSON-Simple
Collected data	r	r	r	$\mid r \mid$	r	<i>r</i>	$\mid r \mid$	r	r	r
#Maven logs	-0.507***	-0.183	-0.522	-0.116	-0.301	0.113	0.315*	-0.129	<0.001	-0.116
#Logs at level INFO	-0.537***	-0.241	-0.344	-0.116	-0.311	0.113	0.318*	-0.111	0.005	-0.116
#Reads on disk	0.199	0.394 **	0.432*	0.306*	0.430*	0.435**	0.260	0.238	0.348*	0.514**

r: The Pearson correlation coefficient

^{*}p < 0.05, **p < 0.01, ***p < 0.001

Cross-Application Insights

- CPU utilization & SQL statements most reliable predictors
- Disk activity
 - Disk writes matter in synthetic workloads
 - Disk reads matter in Maven
- HTTP & general logs less reliable
- Workload and app type affect predictiveness:
 - Controlled and simple workloads consistent
 - Complex/variable workloads unpredictable
 - Microservices one service may use most of the energy

Cross-Application Insights

- CPU utilization & SQL statements most reliable predictors
- Disk activity
 - Disk writes matter in synthetic workloads
 - Disk reads matter in Maven
- HTTP & general logs less reliable
- Workload and app type affect predictiveness:
 - Controlled and simple workloads consistent
 - Complex/variable workloads unpredictable
 - Microservices one service may use most of the energy

Research Question:

Can software energy consumption be estimated using software traces and logs?

Cross-Application Insights

- CPU utilization & SQL statements most reliable predictors
- Disk activity
 - Disk writes matter in synthetic workloads
 - Disk reads matter in Maven
- HTTP & general logs less reliable
- Workload and app type affect predictiveness:
 - Controlled and simple workloads consistent
 - Complex/variable workloads unpredictable
 - Microservices one service may use most of the energy

Research Question:

Can software energy consumption be estimated using software traces and logs?

Answer to Research Question:

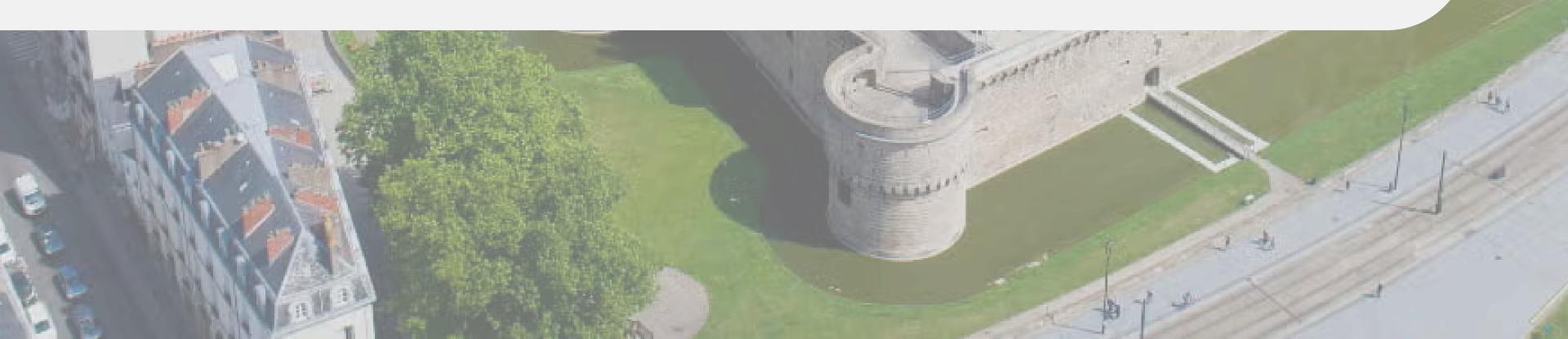
Yes, using hardware metrics + structured logs

Cross-Application Insights

- CPU utilization & SQL statements most reliable predictors
- Disk activity
 - Disk writes matter in synthetic workloads
 - Disk reads matter in Maven
- HTTP & general logs less reliable
- Workload and app type affect predictiveness:
 - Controlled and simple workloads consistent
 - Complex/variable workloads unpredictable
 - Microservices one service may use most of the energy

Research Question:

Can software energy consumption be estimated using software traces and logs?


Answer to Research Question:

Yes, using hardware metrics + structured logs

Limitations

- Single Machine
- Limited Workload Diversity
- Scope Restricted to Univariate Analysis

CONCLUSION & FUTURE WORK

Key Findings:

- Hardware metrics (CPU utilization, disk activity): consistent predictors of energy consumption
- **Structured software logs** (SQL statements, Docker container logs): **useful**, especially for single-service bottlenecks
- Unstructured logs (HTTP requests, Maven logs): unstable correlations, less reliable
- Workload & application structure: strongly influence predictive energy consumption

CONCLUSION & FUTURE WORK

Key Findings:

- Hardware metrics (CPU utilization, disk activity): consistent predictors of energy consumption
- **Structured software logs** (SQL statements, Docker container logs): **useful**, especially for single-service bottlenecks
- Unstructured logs (HTTP requests, Maven logs): unstable correlations, less reliable
- Workload & application structure: strongly influence predictive energy consumption

Future Work:

- Expand experiments to larger-scale, complex workloads, and diverse architectures
- Develop tools/frameworks integrating hardware + software metrics for real-time energy monitoring
- Design energy-aware logging mechanisms to improve prediction and proactive management

Thank you for listening!

I'm happy to take your questions.

Or reach out to thi-mai-phuong.nguyen@univ-pau.fr for any other questions.

Big Data Computing,
Applications and Technologies

This research was supported by CCLO (France) and the RESILINK project (PRIMA S2 2021, EU-funded).